top of page

La loi de la gravitation ou loi de l'attraction universelle

 

Découverte par Isaac Newton, est la loi décrivant la gravitation comme une force responsable de la chute des corps et du mouvement des corps célestes, et de façon générale, de l'attraction entre des corps ayant une masse, par exemple les planètes, les satellites naturels ouartificiels1[réf. incomplète]. Cet article présente essentiellement les aspects de la mécanique classique de la gravitation, et non pas la relativité générale qui procède d'un cadre plus général dans un nouveau paradigme.

 

Histoire de la découverte de la force de gravitation

 

Travaux antérieurs à Newton

 

Chargé par Tycho Brahe d'étudier le mouvement des planètes, Johannes Kepler Ã©crit ses conclusions dans l'ouvrage « Astronomia nova Â» où sont indiquées trois lois que vérifie le mouvement des planètes et des astres, ces lois seront par la suite appelées « lois de Kepler Â». Dans « Harmonices Mundi Â», Kepler écrivit : « C'est comme si une force émane du Soleil Â». Il y étudia la piste d'une force magnétique.

Sur ces bases, à partir de la 3e loi de Kepler, Isaac Newton développa sa théorie sur la gravitation.

Portrait d'Isaac Newton (1643-1727 par Godfrey Kneller (1689)

Isaac Newton (1643-1727) publie son ouvrage fondamental, portant le titre Principes mathématiques de la philosophie naturelle (Principia mathematica philosophiae naturalis) en1687. Il y pose les fondations d'une nouvelle physique. Il y expose son système du monde et démontre les lois de Kepler Ã  partir de la loi d'attraction universelle des masses3. Selon celle-ci, deux points massiques quelconques de l'univers s'attirent avec une force qui est inversement proportionnelle au carré de la distance qui les sépare, et que la force agit le long de la direction qui les joint. Cette loi fera par la suite référence dans les domaines de la mécanique, de la mécanique céleste, de la géodésie et de la gravimétrie.

Sur la loi d'attraction des corps, les idées les plus vagues et changeantes ont circulé avant Newton, mais celui-ci ne fut pas le premier à penser que l'action diminuait avec la distance comme l'inverse du carré. Pour Roger Bacon, toutes les actions à distance se propagent en rayons rectilignes, comme la lumière. Johannes Kepler reprend cette analogie. Or, on savait depuis Euclide que l'intensité lumineuse émise par une source varie en raison inverse du carré de la distance à la source. Dans cette analogie optique, lavirtus movens (vertu mouvante) émanant du Soleil et agissant sur les planètes devrait suivre la même loi. Toutefois, en ce qui concerne la dynamique, Kepler demeure un péripatéticien, c'est-à-dire un disciple d'Aristote. Ainsi, pour lui la force est proportionnelle à la vitesse et non au taux de variation de la vitesse (à l'accélération), comme le postulera plus tard Newton. De sa deuxième loi (r v = constante), Kepler tirera donc la conséquence erronée suivante : la virtus movens du Soleil sur les planètes est inversement proportionnelle à la distance du Soleil. Pour concilier cette loi avec l'analogie optique, il soutient que la lumière se répand de tous côtés dans l'espace, alors que lavirtus movens n'agit que dans le plan de l'équateur solaire.

Plus tard, Ismaël Boulliau (1605-1691) pousse jusqu'au bout l'analogie optique dans son ouvrage Astronomia Philolaïca, paru en 1645. Il soutient donc que la loi d'attraction est inversement proportionnelle au carré de la distance. Toutefois, pour Boulliau, l'attraction est normale au rayon vecteur, tandis que pour Newton elle est centrale. D'autre part,René Descartes se bornera à remplacer la «virtus movens» de Kepler par l'entraînement d'un tourbillon Ã©théré. Il est suivi en cela par Roberval, qui est lui aussi un adepte de lathéorie des tourbillons. Plus méritoirement, Giovanni Alfonso Borelli (1608-1679) explique pourquoi les planètes ne tombent pas sur le Soleil en évoquant l'exemple de la fronde : il équilibre l'«instinct» que possède toute planète à se porter vers le Soleil par la «tendance» que possède tout corps en rotation à s'éloigner de son centre. Pour Borelli, cette vis repellens (force répulsive) est inversement proportionnelle au rayon de l'orbite.

Robert Hooke (1635-1703)

Robert Hooke, secrétaire de la «Royal Society», admet que l'attraction décroît avec la distance. En 1672, il se prononce pour la loi de l'inverse carré, en se basant sur l'analogie avec l'optique. Cependant, ce n'est que dans un écrit daté de 1674 et intitulé «An attempt to prove the annual motion of the Earth» (Un essai pour prouver le mouvement annuel de la Terre) qu'il formule clairement le principe de la gravitation. Il écrit en effet que « tous les corps célestes, sans exception, exercent un pouvoir d'attraction ou de pesanteur dirigé vers leur centre, en vertu duquel non seulement ils retiennent leurs propres parties et les empêchent de s'échapper, comme nous voyons que le fait la Terre, mais encore ils attirent aussi tous les corps célestes qui se trouvent dans la sphère de leur activité. D'où il suit, par exemple, que non seulement le Soleil et la Lune agissent sur la marche et le mouvement de la Terre, comme la Terre agit sur eux, mais que Mercure, Vénus, Mars, Jupiter et Saturne ont aussi, par leur pouvoir attractif, une influence considérable sur le mouvement de la Terre, de même que la Terre en a une puissante sur le mouvement de ces corps. Â»

Comme on le voit, Hooke avait formulé le premier la loi de l'attraction des planètes tout à fait correctement, mais il ne l'avait pas établie. Pour valider son hypothèse de l'inverse carré, Hooke aurait dû connaître les lois de la force centrifuge. Or, les énoncés de celles-ci ne furent publiés par Huyghens qu'en 1673 sous la forme de treize propositions annexées à son «Horologium oscillatorium». En fait, Huyghens avait rédigé dès 1659 un traité intitulé «De vi centrifuga» (Sur la force centrifuge), dans lequel ces lois étaient démontrées, mais celui-ci ne parut qu'en 1703, dans ses Å“uvres posthumes éditées par de Volder et Fullenius. Toutefois, dès 1684, Sir Edmond Halley (1656-1742), ami de Newton, applique ces théorèmes à l'hypothèse de Hooke. En utilisant la troisième loi de Kepler, il trouve la loi de l'inverse carré.

Première édition des «Principia Mathematica» annotée de la main d'Isaac Newton.

En 1687, Newton publie ses «Principes mathématiques de la philosophie naturelle». Par une analyse analogue à celle de Halley, il formule la loi de l'attraction inversement proportionnelle au carré de la distance, en se fondant sur la troisième loi de Kepler4. Néanmoins, étant sans doute plus scrupuleux que ses précurseurs, Newton entend soumettre cette loi au contrôle de l'expérience. Aussi cherche-t-il à vérifier si l'attraction exercée par la Terre sur la Lune répond à cette loi et si l'on peut identifier cette attraction à la pesanteur terrestre, afin d'établir le caractère universel de l'attraction. Sachant que le rayon de l'orbite lunaire vaut environ 60 rayons terrestres, la force qui maintient la Lune sur son orbite serait, dans ces conditions, 60²=3600 fois plus faible que la pesanteur.

 

bottom of page